janvier 2016 — The 3D folding of metazoan genomes correlates with the association of similar repetitive elements. Nucleic Acids Research vol. 44, n° 1, dir. {Oxford University Press} p. 245-255
,
décembre 2014 — Metagenomic chromosome conformation capture (meta3C) unveils the diversity of chromosome organization in microorganisms. eLife vol. 3, , dir. {eLife Sciences Publication} e03318
,
août 2015 — Condensin- and Replication-Mediated Bacterial Chromosome Folding and Origin Condensation Revealed by Hi-C and Super-resolution Imaging.. Molecular Cell vol. 59, n° 4, dir. {Elsevier} p. 588-602
,
juillet 2021 — Improving distance measures between genomic tracks with mutual proximity. Briefings in Bioinformatics , , dir. {Oxford University Press (OUP)}
,
juillet 2021 — Epigenetic rewriting at centromeric DNA repeats leads to increased chromatin accessibility and chromosomal instability. Epigenetics & Chromatin vol. 14, n° 1, dir. {BioMed Central}
,
juin 2021 — MNHN-Tree-Tools: A toolbox for tree inference using multi-scale clustering of a set of sequences. Bioinformatics , , dir. {Oxford University Press (OUP)}
,
novembre 2018 — High-salt Recovered Sequences are associated with the active chromosomal compartment and with large ribonucleoprotein complexes including nuclear bodies. Genome Research vol. 28, n° 11, dir. {Cold Spring Harbor Laboratory Press} p. 1733-1746
,
septembre 2015 — Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biology vol. 16, n° 1, dir. {BioMed Central} p. 206
,
2012 — Normalization of a chromosomal contact map. BMC Genomics vol. 13, n° 1, dir. {BioMed Central} p. 436
,
2014 — 3D genome reconstruction from chromosomal contacts. Nature Methods vol. 11, , dir. {Nature Publishing Group} p. 1141-1143
,
juin 2020 — Distributed under Creative Commons CC-BY 4.0 Genome annotation across species using deep convolutional neural networks. PeerJ Computer Science vol. 6, , dir. {PeerJ} e278
,
août 2018 — Kinetic Signature of Cooperativity in the Irreversible Collapse of a Polymer. Physical Review Letters vol. 121, n° 5, dir. {American Physical Society} p. 057801
,
mars 2017 — 3D organization of synthetic and scrambled chromosomes. Science vol. 355, n° 6329, dir. {American Association for the Advancement of Science} eaaf4597
,
2013 — Systematic characterization of the conformation and dynamics of budding yeast chromosome XII. Journal of Cell Biology vol. 202, n° 2, dir. {Rockefeller University Press} p. 201-210
,
novembre 2013 — High-throughput chromatin motion tracking in living yeast reveals the flexibility of the fiber throughout the genome. Genome Research vol. 23, n° 11, dir. {Cold Spring Harbor Laboratory Press} p. 1829-1838
,
juin 2015 — Principles of chromatin organization in yeast: relevance of polymer models to describe nuclear organization and dynamics. Current Opinion in Cell Biology vol. 34, , dir. {Elsevier} p. 54-60
,
février 2018 — Multiscale Structuring of the E. coli Chromosome by Nucleoid-Associated and Condensin Proteins. Cell vol. 172, n° 4, dir. {Elsevier} 771–783.e18
,
juillet 2018 — Characterizing meiotic chromosomes’ structure and pairing using a designer sequence optimized for Hi-C. Molecular Systems Biology vol. 14, n° 7, dir. {EMBO Press} e8293
,
janvier 2022 — Contribution of 3D genome topological domains to genetic risk of cancers: a genome-wide computational study. Human Genomics vol. 16, n° 1, dir. {BioMed Central} p. 2
,
2022 — Nucleosome positioning on large tandem DNA repeats of the ’601’ sequence engineered in Saccharomyces cerevisiae. Journal of Molecular Biology vol. 434, n° 1, p. 15
,